R COURSES

- 1. Introduction to programming in R
- 2. Basic statistics using R
- 3. Credit risk management using R
- 4. Portfolio optimization in R
- 5. Artificial neural networks using R

INTRODUCTION TO PROGRAMMING IN R

Learning Outcome Statements

- Learn how to program in R
- Learn to use R for data analysis
- · Learn to install and configure a statistical programming environment
- Understand generic programming concepts as they apply to R

Key Contents

- Learning R
 - o Objects,
 - Data types, Data Structures
 - Assignments
- Working with R
 - Installing Packages
 - Working with Scripts
 - Setting up working Directories
 - Sub-setting data with square bracket
 - Importing Data
 - Logical Statements
- Doing Math in R
 - Math Function
 - Functions for Statistical Distributions
 - $\,\circ\,$ Sorting and Operations on Vectors and Matrices

- Plots in R
 - Histograms
 - o Bar plot
 - Box Plots
 - Co-Plot

 - o QQ Norm
 - QQ Plot
- Conditionals statements
- o Loops
- Functions
- Writing your own Function

- o Pairs

 - Scatterplots
- Control Statements

BASIC STATISTICS USING R

Learning Outcome Statements

- Learn to sample and explore data
- Introduction to basic probability theory and Bayes' rule
- · Learn about various continuous and discrete probability distributions
- Discuss hypothesis testing and relate testing procedures back to estimation via confidence intervals.

Key Contents

- Data Description
 - Descriptive Statistics
 - Exploratory Data Analysis
 - Multivariate Data and Data Frames
- Probability
 - $\,\circ\,$ Sample Spaces
 - \circ Events
 - Properties of Probability
 - \circ Counting Methods
 - Conditional Probability
 - Independent Events
 - Bayes' Rule
 - Random Variables
- Discrete Distributions
 - Discrete Random Variables
 - Discrete Uniform Distribution
 - \circ Binomial Distribution
 - Other Discrete Distributions
- Continuous Distributions
 - Continuous Random Variables
 - $\circ~$ Continuous Uniform Distribution
 - \circ Normal Distribution
 - $\circ~$ Other Continuous Distributions
- Multivariate Distributions
 - o Joint and Marginal Probability Distributions
 - Joint and Marginal Expectation
 - Conditional Distributions
 - Independent Random Variables
 - Bivariate Normal Distribution
 - Multinomial Distribution

- Sampling Distribution
 - o Simple Random Samples
 - o Central Limit Theorem
 - Sampling Distributions of Two-sample Statistics
- Estimation
 - Point Estimation
 - Confidence Interval for Means
 - Confidence Intervals for Difference of Means
 - Confidence Intervals for Proportions
 - $\circ~$ Confidence Intervals for Variances
 - Fitting Distributions
 - Sample Size and Margin of Error
- Hypothesis Testing
 - $\circ~\mbox{Tests}$ for Proportion
 - $\circ~$ One Sample Tests for Means and Variances
 - o Two-Sample Tests for Means and Variances
 - $\circ~\mbox{Analysis}$ of Variance
- Simple Linear Regression
 - o Estimation
 - Residual Analysis
- Multiple Linear Regression
 - $\circ~$ Multiple Linear Regression Model
 - $\circ~\mbox{Estimation}$ and Prediction
 - Polynomial Regression
 - Residual Analysis

CREDIT RISK MODELING USING R

Learning Outcome Statements

- · Gain an introduction to credit risk modeling
- Understand how logistic regression is used in credit risk modeling
- · Understand how classification trees are used in credit risk modeling
- · Learn to evaluate and compare credit risk models

Key Contents

Basic R

- Learning R
- Doing Statistics in R

Machine Learning Algorithms

- Linear Regression
 - Regression Hypotheses and Assumptions
 - Ordinary Least Squares (OLS)
 - Computing Regression Coefficients
 - o Coefficient of Determination
 - o Interpretation of the Regression Output
- Multiple Linear Regression
 - $\,\circ\,$ Types of Multiple Linear Regression
 - o Building the Multiple Linear Regression Model
 - o Two-Variable Model
 - Computing Regression Coefficients
 - Coefficient of Determination and Adjusted R2
 - Interpretation of the Regression Output
- Logistic Regression
 - Probability
 - \circ Odds and Odds Ratio
 - $\,\circ\,$ Logit and Inverse-logit functions
 - Computing Regression Coefficients
 - $\,\circ\,$ Coefficient of Determination and Adjusted R2
 - \circ Interpretation of the Regression Output
- Decision Tree & Random Forest
 - $\,\circ\,$ Information theory
 - $\,\circ\,$ Structure of the tree
 - Building the tree
 - Evaluation of tree (Confusion Matrix, ROC Curves, Pearson Correlation Coefficient, Area Under Curve)
 - Prediction using tree
 - Overfitting and Underfitting
 - \circ Cross Validation
 - Pruning Trees
 - \circ Bagging
 - o Random Forest

- **Introduction to Credit Risk Modeling**
- Approach to Model Building
- Architectural Suggestions
- Reading Data In
- Binning Example
- Example of Binning or Coarse Classifying in R
- Breaking Data into Training and Test Sample
- Traditional Credit Scoring
- Traditional Credit Scoring Using Logistic Regression in R
- Calculating ROC Curve for model
- Calculating KS Statistic
- Calculating top 3 variables affecting Credit Score Function in R

Credit Risk Modelling in R

- Using Bayesian N Using Traditional recursive Partitioning
- Comparing Complexity and out of Sample Error
- Compare ROC Performance of Trees
- Converting Trees to Rules
- Bayesian Networks in Credit Scoring
- Using Traditional recursive Partitioning
- Comparing Complexity and out of Sample Error
- Compare ROC Performance of Trees
- Converting Trees to Rules
- Conditional inference Trees
- Using Random Forests
- Calculating Area under the Curve
- Cross Validation
- Cutting Edge techniques: Party Package (Unbiased Non parametric methods-Model Based Trees)

PORTFOLIO OPTIMIZATION IN R

Learning Outcome Statements

- Gain an introduction to robust portfolio optimization techniques as a remedy to the outlier sensitivity encountered by plain Markowitz optimization
- Understand the concept of portfolio diversification and concepts of the most diversified, equal risk contributed and minimum tail-dependent portfolios
- Understand the concept of conditional value at risk and draw-down of a portfolio
- Understand the concept of copula opinion pooling and the construction of a wealth protection strategy

Key Contents

Brief Course in R

- Working with R
- Classes, methods and functions

Modern Portfolio Theory

- Markowitz portfolios
- Empirical mean-variance portfolios

Portfolio Optimization Approaches

- Robust portfolio optimization
- Robust statistics
- Selected robust estimators
- Robust optimization
- Synopsis of R packages
 - covRobust
 - o fPortfolio
 - o MASS
 - o robustbase
 - o robust
 - o rrcov

Diversification

- Most-diversifed portfolio
- Risk contribution constrained portfolios
- Optimal tail-dependent portfolios
- Synopsis of R packages
 - o cccp
 - DEoptim, DEoptimR, and RcppDE
 - o FRAPO
 - PortfolioAnalytics

Risk-optimal portfolios

- Mean-VaR portfolios
- Optimal CVaR portfolios
- Synopsis of R packages
 - o fPortfolio
 - o FRAPO
 - Packages for linear programming
 - o PerformanceAnalytics

- **Tactical Asset Allocation Overview 274**
- Univariate time series models
- Multivariate time series models
- The Black–Litterman approach
- Copula opinion and entropy pooling
- Synopsis of R packages
 - o BLCOP
 - o dse
 - o fArma
 - o forecast
 - MSBVAR
 - PortfolioAnalytics
 - o urca and vars
- Black–Litterman portfolio optimization
- Copula opinion pooling
- Entropy pooling
- Protection strategies

Probabilistic Utility

- Overview 339
- Concept of probabilistic utility
- Markov Chain Monte Carlo
- Monte Carlo approaches
- Markov chains
- Metropolis–Hastings algorithm
- Synopsis of R packages
 - Packages for conducting MCMC
 - Packages for analyzing MCMC

NEURAL NETWORKS INR

Learning Outcome Statements

- · Get familiar with simple mathematical concepts relevant to neural networks
- Understand data representation of neural networks
- Learn to use neural networks to solve real problems
- Examine the core components of neural networks: layers, networks, objective functions, and optimizers.
- Learn about the three most common use cases of neural networks: binary classification, multiclass classification, and scalar regression
- Gain a brief introduction to Keras

Key Contents

Data representation of neural networks

- Scalars
- Vectors
- Matrices
- 3D tensors and higher-dimensional tensors
- Manipulating tensors in R
- Vector data
- Time series data or sequence data
- Image data
- Video data

Tensor Operations

- Element-wise operations
- Operations involving tensors of different dimensions
- Tensor Reshaping
- Geometric interpretation of tensor operations
- Geometric interpretation of deep learning

Gradient-based Optimization

- Derivative of a tensor operation
- Stochastic gradient descent
- Backpropagation algorithm
- Training neural networks using gradient descent

Anatomy of a Neural Network

- Layers
- Models
- Loss functions and optimizers

Introduction to Keras

- Keras
- Tensorflow
- Theano
- CNTK

Setting Up a deep-learning workstation

Case Studies

- Binary classification example
- Multiclass classification example
- Regression example